div.TabView div.Tabs { height: 24px; overflow: hidden; } div.TabView div.Tabs a { float: left; display: block; width: 90px; text-align: center; height: 24px; padding-top: 3px; vertical-align: middle; border: 1px solid #000; border-bottom-width: 0; text-decoration: none; font-family: "Times New Roman", Serif; font-weight: 900; color: #000; } div.TabView div.Tabs a:hover, div.TabView div.Tabs a.Active { background-color: #FF9900; } div.TabView div.Pages { clear: both; border: 1px solid #6E6E6E; overflow: hidden; background-color: #FF9900; } div.TabView div.Pages div.Page { height: 100%; padding: 0px; overflow: hidden; } div.TabView div.Pages div.Page div.Pad { padding: 3px 5px; }

Senin, 20 September 2010

Kinematika ( Gerak Vertikal )

Gerak vertikal ke bawah

Gerak vertikal ke bawah sangat mirip dengan gerak jatuh bebas, cuma beda tipis… kalau pada gerak jatuh bebas, kecepatan awal benda, vo = 0, maka pada gerak vertikal ke bawah, kecepatan awal (vo) benda tidak sama dengan nol. Contohnya begini… kalau buah mangga dengan sendirinya terlepas dari tangkainya dan jatuh ke tanah, maka buah mangga tersebut melakukan Gerak Jatuh Bebas. Tapi kalau buah mangga anda petik lalu anda lemparkan ke bawah, maka buah mangga melakukan gerak Vertikal Ke bawah. Atau contoh lain… anggap saja anda sedang memegang batu… nah, kalau batu itu anda lepaskan, maka batu tersebut mengalami gerak Jatuh bebas.. tapi kalau batu anda lemparkan ke bawah, maka batu mengalami Gerak Vertikal Ke bawah. Pahami konsep ini baik-baik, karena jika tidak dirimu akan kebingungan dengan rumusnya……..

Karena gerak vertikal merupakan contoh GLBB, maka kita menggunakan rumus GLBB. Kita tulis dulu rumus GLBB ya, baru kita bahas satu per satu……

vt = vo + at

s = vo t + ½ at2

vt2 = vo2 + 2as

Kalau dirimu paham konsep Gerak Vertikal Ke bawah, maka persamaan ini dengan mudah diubah menjadi persamaan Gerak Vertikal Ke bawah.

Pertama, percepatan pada gerak vertikal = percepatan gravitasi ( a = g)

Kedua, ketiga melakukan gerak vertikal ke bawah, kecepatan awal benda bertambah secara konstan setiap saat (benda mengalami percepatan tetap). Karena benda mengalami percepatan tetap maka g bernilai positif.

Ketiga, kecepatan awal tetap disertakan karena pada Gerak Vertikal ke bawah benda mempunyai kecepatan awal.

Keempat, karena benda bergerak vertikal maka s bisa kita ganti dengan h atau y.

Dengan demikian, jika persamaan GLBB di atas diubah menjadi persamaan Gerak Vertikal ke bawah, maka akan kita peroleh persamaan Gerak Vertikal ke bawah sebagai berikut :

vt = vo + gt

h = vo t + ½ gt2

vt2 = vo2 + 2gh

Contoh soal 1 :

Misalnya anda memanjat pohon mangga untuk memetik buah mangga. Setelah dipetik, buah mangga anda lempar ke bawah dari ketinggian 10 meter, dengan kecepatan awal 5 m/s. Berapa kecepatan buah mangga ketika menyentuh tanah ? g = 10 m/s2

Panduan jawaban :

Karena diketahui h, vo dan g, maka kita menggunakan persamaan :

vt2 = vo2 + 2gh

vt2 = (5 m/s)2 + 2(10 m/s2) (10 m)

vt2 = 25 m2/s2 + 200 m2/s2

vt2 = 225 m2/s2

vt = 15 m/s

Contoh soal 2 :

Dari atap rumah, anda melempar sebuah bola ke bawah dengan kecepatan 10 m/s. Jika anda berada pada ketinggian 20 m dari permukaan tanah, berapa lama bola yang anda lemparkan berada di udara sebelum menyentuh permukaan tanah ? g = 10 m/s2

Panduan jawaban :

Untuk menghitung selang waktu yang dibutuhkan bola ketika berada di udara, kita bisa menggunakan persamaan :

vt = vo + gt

Berhubung kecepatan akhir bola (vt) belum diketahui, maka terlebih dahulu kita hitung kecepatan akhir bola sebelum menyentuh permukaan tanah :

Karena diketahui telah diketahui h, vo dan g, maka kita menggunakan persamaan :

vt2 = vo2 + 2gh

vt2 = (10 m/s)2 + 2(10 m/s2) (20 m)

vt2 = 100 m2/s2 + 400 m2/s2

vt2 = 500 m2/s2

vt = 22,36 m/s

Sekarang kita masukan nilai vt ke dalam persamaan vt = vo + gt

22,36 m/s = 10 m/s + (10 m/s2)t

22,36 m/s – 10 m/s = (10 m/s2)t

12,36 m/s = (10 m/s2) t

t = (12,36 m/s) : (10 m/s2)

t = 1,2 sekon

Jadi setelah dilempar, bola berada di udara selama 1,2 sekon.

Gerak Vertikal Ke atas

Setelah pemanasan dengan soal gerak vertikal ke bawah yang gurumuda sajikan di atas, sekarang mari kita bergulat lagi dengan Gerak Vertikal ke Atas. Analisis Gerak Jatuh Bebas dan Gerak Vertikal ke bawah lebih mudah dibandingkan dengan Gerak Vertikal ke atas. Hala… gampang kok… santai saja. Oya, sebelumnya terlebih dahulu anda pahami konsep Gerak Vertikal ke atas yang akan dijelaskan berikut ini.

Gerak vertikal ke atas itu bagaimana ? apa bedanya gerak vertikal ke atas dengan gerak vertikal ke bawah ?

Ada bedanya….

Pada gerak vertikal ke bawah, benda hanya bergerak pada satu arah. Jadi setelah diberi kecepatan awal dari ketinggian tertentu, benda tersebut bergerak dengan arah ke bawah menuju permukaan bumi. Terus bagaimana dengan Gerak Vertikal ke atas ?

Pada gerak vertikal ke atas, setelah diberi kecepatan awal, benda bergerak ke atas sampai mencapai ketinggian maksimum. Setelah itu benda bergerak kembali ke permukaan bumi. Dinamakan Gerak Vertikal Ke atas karena benda bergerak dengan arah ke atas alias menjahui permukaan bumi. Persoalannya, benda tersebut tidak mungkin tetap berada di udara karena gravitasi bumi akan menariknya kembali. Dengan demikian, pada kasus gerak vertikal ke atas, kita tidak hanya menganalisis gerakan ke atas, tetapi juga ketika benda bergerak kembali ke permukaan bumi… ini yang membuat gerak vertikal ke atas sedikit berbeda…

Karena gerakan benda hanya dipengaruhi oleh percepatan gravitasi yang bernilai tetap, maka gerak vertikal ke atas termasuk gerak lurus berubah beraturan. Dengan demikian, untuk menurunkan persamaan Gerak Vertikal ke atas, kita tetap menggunakan persamaan GLBB.

Kita tulis kembali ketiga persamaan GLBB :

vt = vo + at

s = vo t + ½ at2

vt2 = vo2 + 2as

Ada beberapa hal yang perlu kita perhatikan dalam menganalisis Gerak Vertikal ke atas

Pertama, percepatan pada gerak vertikal = percepatan gravitasi ( a = g).

Kedua, ketika benda bergerak ke atas, kecepatan benda berkurang secara konstan setiap saat. Kecepatan benda berkurang secara konstan karena gravitasi bumi bekerja pada benda tersebut dengan arah ke bawah. Masa sich ? Kalau gravitasi bumi bekerja ke atas, maka benda akan terus bergerak ke atas alias tidak kembali ke permukaan bumi. Tapi kenyataannya tidak seperti itu… Karena kecepatan benda berkurang secara teratur maka kita bisa mengatakan bahwa benda yang melakukan gerak vertikal ke atas mengalami perlambatan tetap. Karena mengalami perlambatan maka percepatan gravitasi bernilai negatif.

Kedua, karena benda bergerak vertikal maka s bisa kita ganti dengan h atau y.

Ketiga, pada titik tertinggi, tepat sebelum berbalik arah, kecepatan benda = 0.

Jika persamaan GLBB di atas diubah menjadi persamaan Gerak Vertikal ke atas, maka akan diperoleh persamaan berikut ini :

vt = vo – gt

h = vo t – ½ gt2

vt2 = vo2 – 2gh

Contoh soal 1 :

Sebuah bola dilempar ke atas dan mencapai titik tertinggi 10 meter. Berapa kecepatan awalnya ? g = 10 m/s2

Panduan jawaban :

Ingat ya, pada titik tertinggi kecepatan bola = 0.

Soal ini gampang… karena diketahui kecepatan akhir (vt = 0) dan tinggi (h = 10 m), sedangkan yang ditanyakan adalah kecepatan awal (vo), maka kita menggunakan persamaan :

vt2 = vo2 – 2gh

0 = vo2 – 2(10 m/s2) (10 m)

vo2 = 200 m2/s2

vo = 14,14 m/s

Contoh soal 2 :

Sebuah bola dilemparkan dari tanah tegak lurus ke atas dengan laju 24 m/s.

a) berapa lama waktu yang dibutuhkan untuk mencapai titik tertingginya ?

b) berapa ketinggian yang dapat dicapai bola ?

Panduan jawaban :

Sebelum mengoprek soal ini, langkah pertama yang harus kita lakukan adalah mengidentifikasi atau mengenali permasalahan yang dimunculkan pada soal. Setelah itu, selidiki nilai apa saja yang telah diketahui. Selajutnya, memikirkan bagaimana menyelesaikannya. Hal ini penting dalam memilih rumus yang disediakan.

  1. Berapa lama waktu yang dibutuhkan untuk mencapai titik tertingginya ?

Di titik tertinggi, vy = 0. Pada soal di atas diketahui kecepatan awal vy0 = 24 m/s . Untuk memperoleh t, kita gunakan rumus :

vy = vyo – gt

Rumus ini kita balik, untuk menentukan nilai t (waktu) :

gerak vertikal-1

b. berapa ketinggian yang dicapai bola ?

Karena telah diketahui kecepatan awal dan kecepatan akhir, maka kita menggunakan rumus :

vy2 = vyo2 – 2gh

Rumus ini kita balik untuk menghitung nilai h alias ketinggian :

gerak vertikal-2

Referensi :

Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga

Halliday dan Resnick, 1991, Fisika Jilid I (Terjemahan), Jakarta : Penerbit Erlangga

Tipler, P.A.,1998, Fisika untuk Sains dan Teknik–Jilid I (terjemahan), Jakarta : Penebit Erlangga

Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga

Penjumlahan Vektor

Menggambar Penjumlahan atau

selisih dua buah vektor dengan metode segitiga

Misalkan dua orang anak mendorong sebuah benda dengan vektor gaya masing-masing sebesar F1 dan F2, seperti ditunjukkan diagram di bawah. Ke arah mana benda itu akan pindah ? tentu saja benda tersebut tidak berpindah searah F1 atau F2. dalam kasus seperti itu, maka benda tersebut berpindah searah dengan F1 + F2. Operasi ini disebut jumlah vektor.

Cara menggambar jumlah dua buah vektor adalah dengan metode segitiga. Pertama, gambar vektor F1 berupa tanda panah. kedua, gambar vektor kedua, F2, dengan pangkalnya berhimpitan dengan ujung vektor pertama, F1. ketiga, jumlahkan kedua vektor, dengan menggambar vektor resultan (F1 + F2), dari pangkal vektor F1 menuju ujung vektor F2. selesai. Proses ini ditunjukkan pada gambar di bawah ini.

Cara menggambar selisih vektor pada dasarnya sama dengan menggambar penjumlahan dua vektor. Sebagai contoh, sebuah vektor F1 dan vektor F2 nilainya seperti tampak pada diagram di bawah. Berapa selisih kedua vektor tersebut ? misalnya F3 adalah selisih vektor F1 dan F2, maka dapat kita tulis F3 = F1 – F2 atau F3 = F1 + (-F2). Hal ini menunjukkan bahwa selisih antara vektor F1 dan F2 sama saja dengan penjumlahan vektor F1 dan vektor -F2. tanda minus hanya menunjukkan bahwa arah -F2 berlawanan dengan F2. Bingung ? silahkan baca terus biar paham.

Bagaimana menggambar selisih vektor F1 dan F2 ?

Pertama, gambar terlebih dahulu tanda panah yang melambangkan vektor F1. kedua, gambar vektor -F2. vektor -F2 besarnya sama dengan F2, hanya arahnya berlawanan. (Lihat dan bandingkan gambar di bawah dan di atas). Ketiga, gambar tanda panah vektor resultan F3, di mana pangkal vektor F3 berimpit dengan pangkal vektor F1 dan ujung vektor F3 berimpit dengan ujung vektor -F2. Berimpit itu artinya menempel, atau apalah terserah kamu. Selesai….

Gampang to ? masih ga mudeng ? ulangi dari awal, bacanya pelan2 biar ngerti. Kalau sudah paham, lanjut, next mission…..

Menggambar Penjumlahan lebih dari 2 Vektor dengan metode Poligon

Poligon itu artinya segi banyak/banyak segi. Gimana, dah siap belum ? sekarang tarik napas panjang….

Sebelumnya, kita belajar menggambar 2 vektor dengan cara segitiga. Bagaimana jika kamu disuruh menggambar resultan atau jumlah vektor yang lebih dari 3 ?

Misalnya kamu berpindah sejauh 4 meter, vektor A (lihat gambar di bawah), lalu kamu berpindah lagi sejauh 3 meter, vektor B. Karena hobimu jalan-jalan, maka kamu pindah lagi sejauh 2 meter, vektor C. karena suka jalan-jalan maka kamu dihukum pacarmu (aneh ya…) untuk menggambar vektor perpindahanmu tadi. Loncat ke bawah….

untuk menggambar vektor resultan/hasil penjumlahan lebih dari 2 vektor, maka kamu tidak bisa menggunakan metode/cara segitiga. Kenapa? Cari tahu sendiri ya, kan dah besar. Kamu harus menggunakan metode poligon/segi banyak. Caranya, pertama, gambar vektor A. kedua, gambar vektor B, di mana pangkal vektor B berimpit/nempel dengan ujung vektor A (lihat gambar di bawah). Ketiga, gambar vektor C di ujung vektor B. caranya seperti menggambar vektor B. terakhir, gambar vektor D sebagai vektor resultan/hasil, dimana pangkal vektor D nempel dengan pangkal vektor A dan ujung vektor B nempel dengan ujung vektor C. selesai…

Kalo masih bingung, baca, sambil lihat gambar. Guampang to ? mission complete… lanjut.

Menggambar Penjumlahan 2 atau Lebih vektor dengan metode Jajaran Genjang.

Selain menggambar penjumlahan vektor dengan metode/cara segitiga dan poligon, kita juga bisa menggunakan metode jajaran genjong, eh genjang. Kalau metode segitiga khusus untuk dua vektor dan metode poligon khusus untuk lebih dari dua vektor, maka metode jajaran genjang untuk menggambar penjumlahan dua vektor atau lebih. Bagaimana menggambar penjumlahan dua vektor atau lebih menggunakan cara jajaran genjang ?

Menggambar penjumlahan 2 vektor menggunakan metode jajaran genjong.

Misalkan dua orang anak mendorong sebuah benda dengan vektor Gaya masing-masing sebesar F1 dan F2, seperti ditunjukkan diagram di bawah. Ke arah mana benda itu akan pindah ?

untuk menggambar penjumlahan dua vektor, lakukan sesuai langkah2 di bawah ini. Pertama, gambar vektor F1 menggunakan tandah panah (lihat gambar di bawah). Kedua, gambar vektor F2, di mana pangkal/buntut berimpit/nempel dengan pangkal/buntut vektor F1. ketiga, gambar vektor resultan, F3 (F1 + F2), di mana pangkal vektor F3 nempel dengan pangkal vektor F1 dan F2, sedangkan ujung vektor F3 nempel dengan titik temu garis putus-putus dari kedua ujung vektor F1 dan vektor F2 (sambil lihat gambar, biar tidak bingung).

Menggambar penjumlahan lebih dari 2 vektor menggunakan metode jajaran genjong.

Misalnya kamu berpindah sejauh 4 meter seperti vektor A (lihat gambar di bawah), lalu kamu berpindah lagi sejauh 3 meter seperti vektor B. Karena hobimu jalan-jalan, maka kamu pindah lagi sejauh 2 meter seperti vektor C. karena suka jalan-jalan maka kamu dihukum pacarmu (aneh ya…) untuk menggambar vektor perpindahanmu, tapi kali ini dengan metode jajaran genjong. Bagaimanakah ?

Untuk menggambar penjumlahan lebih dari 2 vektor, lihat petunjuk berikut ini. Pertama, gambar vektor A menggunakan tandah panah (lihat gambar di bawah). Kedua, gambar vektor B, di mana pangkalnya berimpit/nempel dengan pangkal/buntut vektor A. ketiga, gambar vektor C, di mana pangkalnya berhimpit dengan pangkal vektor A dan B. keempat, buat garis putus-putus tegak lurus dari ujung vektor A dan B sampai kedua garis putus-putus tersebut bertemu, Vektor D (buat garis satu2, kalo kamu kidal+, pake aja dua tanganmu sekalian, hehe…). Kelima, tarik garis dari pangkal vektor A,B dan C menuju titik temu garis putus-putus yang sudah kamu buat tadi (jangan lupa lihat gambar ya). Keenam, buat lagi garis putus2 tegak lurus dari titik temu vektor A dan B dan dari ujung vektor C sampai kedua garis putus2 tersebut bertemu. Nah, sekarang tarik garis lurus dari pangkal vektor A, B dan C menuju titik temu garis putus2 yang baru saja kamu buat, Vektor Resultan (R). Garis terakhir tersebut adalah vektor resultannya….

Tadi kita belajar menggambar resultan penjumlahan vektor, sekarang kita belajar menentukan besar dan arah vektor resultan.

Menentukan Vektor Resultan

Ada dua cara yang dapat dilakukan untuk menentukan nilai dan arah vektor resultan, yaitu dengan metode grafis dan metode analitis.

MENENTUKAN VEKTOR RESULTAN DENGAN METODE GRAFIS

Dengan menggunakan metode segitiga dan poligon, kita dapat melukis vektor resultan dari dua buah vektor atau lebih. Dari gambar vektor resultan tersebut, kita dapat menentukan besar dan arah vektor resultan dengan melakukan pengukuran (bukan menghitung). Cara menentukan vektor resultan seperti ini disebut metode grafis. Sekarang, bagaimana menentukan vektor resultan dengan metode grafis ? di baca terus ya, hehe….

Langkah-langkah menentukan besar dan arah vektor resultan dengan metode grafis, adalah sebagai berikut :

  1. tetapkan sumbu X positif sebagai acuan menentukan arah. Ingat, sudut positif diukur dengan arah berlawanan arah jarum jam, sedangkan sudut negatif diukur dengan arah searah jarum jam.
  2. gambar setiap vektor yang akan dijumlahkan (lihat kembali menggambar penjumlahan vektor menggunakan jajaran genjang)
    1. Arah vektor digambar terhadap sumbu x positif dengan menggunakan busur derajat

  3. gambar vektor Resultan dengan metode segitiga (untuk 2 vektor) dan metode poligon (lebih dari 2 vektor)
  4. ukur panjang vektor Resultan dengan mistar, sedangkan arah vektor Resultan diukur terhadap sumbu x positif dengan busur derajat
  5. tentukan besar dan arah vektor Resultan :
    1. Besar vektor Resultan sama dengan hasil kali panjang vektor resultan (langkah 4) dengan skala panjang (langkah 2b)
    2. Arah vektor resultan sama dengan sudut yang dibentuk oleh vektor resultan terhadap sumbu x positif yang telah diukur dengan busur derajat

Contoh soal :

Tentukan besar dan arah vektor resultan dari vektor perpindahan A sepanjang 20 m dengan arah -30o terhadap sumbu x positif (arah mendatar ke kanan) dan vektor perpindahan B sepanjang 30 m dengan arah +45o terhadap sumbu x positif.

Petunjuk :

Kita harus menetapkan skala panjang terlebih dahulu. Setelah itu, gambar vektor A dan B secara terpisah. Terakhir, gambar vektor resultan R=A+B dengan metode segitiga atau poligon, lalu kita menentukan besar dan arahnya

Panduan solusi :

Langkah 1, misalnya kita menetapkan skala panjang vektor perpindahan 5 m = 1 cm (catatan : anda dapat menetapkan skala sesuai dengan kemauan anda, penetapan skala di atas hanya sebagai contoh). Dengan demikian, besar perpindahan 20 m digambar dengan panjang vektor 4 cm (ingat, 20 : 5 = 4), dengan arah -30o terhadap sumbu x positif (gambar a).

Langkah 2, gambar vektor perpindahan B (besarnya 30 m) dengan panjang tanda panahnya 6 cm (ingat, skala yang kita tetapkan 5 m = 1 cm, jadi 30 m = 6 cm) dan arahnya sebesar 45o terhadap sumbu x positif. (gambar b). Lihat gambar di bawah.

Langkah 3, gambar vektor resultan R = A + B (gambar c)

Langkah 4, ukur panjang vektor R dengan mistar dan arah vektor R dengan bujur sangkar. Besar vektor R diperoleh dengan mengalikan panjang vektor R dengan skala panjang vektor

(Catatan : menentukan besar dan arah vektor Resultan dengan metode grafis merupakan salah satu pendekatan. Ketelitian hasil yang diperoleh juga sangat bergantung pada skala gambar, ketelitian mistar, busur derajat serta ketepatan anda dalam menggambar dan membaca skala. Jika anda ingin menentukan besar dan arah vektor Resultan secara lebih tepat, dapat digunakan perhitungan matematis (bukan dengan pengukuran), yakni menggunakan metode analitis)

MENENTUKAN VEKTOR RESULTAN DENGAN METODE ANALITIS

Dalam menentukan besar dan arah vektor Resultan dengan metode analitis, kita dapat menggunakan 2 cara yaitu menggunakan Rumus Cosinus dan menggunakan Vektor Komponen.

Menentukan Vektor Resultan segaris kerja (ingat kembali pelajaran SMP)

Di SMP kita telah belajar tentang vektor resultan untuk dua vektor gaya yang segaris kerja (searah atau berlawanan arah). Kali ini kita ulangi kembali, sebagai dasar sebelum menghitung vektor resultan dengan rumus Cosinus.

Kita meninjau vektor perpindahan yang segaris kerja. Misalnya kamu berpindah sejauh 200 m ke arah timur (vektor A), lalu berjalan kembali arah barat sejauh 300 m (vektor B).berapakah perpindahan total yang kamu lakukan dihitung dari kedudukan awalmu ?

Panduan Jawaban :

Untuk vektor2 yang segaris kerja, arahnya dapat dibedakan dengan memberi tanda + dan -. Jika kita tetapkan arah timur bertanda +, maka arah barat bertanda -. Berdasarkan ketetapan kita tadi, maka besar vektor A = +200 m dan besar vektor B = -300 m. dengan demikian besar vektor Resultannya adalah : R = A + B = (+200 m) + (-300 m) = 200 m – 300 m = -100 m (tanda – hanya menunjukan bahwa arah vektor Resultan ke barat atau sesuai dengan arah vektor B)

(pada gambar ditetapkan skala 50 m = 1 cm)

Melalui contoh di atas, diketahui bahwa operasi penjumlahan dalam berhitung berlaku untuk resultan dari dua vektor yang berlawanan arah. Demikian juga dua vektor yang searah.

Menentukan vektor Resultan Pada Segitiga Siku-siku

Apakah hitungan vektor tetap memenuhi hukum berhitung jika perpindahan berlaku untuk dua dimensi ? untuk menjawabnya, perhatikan contoh berikut ini.

Dari kedudukan awalmu, kamu berjalan ke timur sejauh 300 m (vektor A), lalu berbelok ke selatan sejauh 400 meter (vektor B). Apakah perpindahan totalmu 700 m ? atau 100 m ?

Panduan jawaban :

Terlebih dahulu kita tetapkan skala perpindahan, misalnya 100 m = 1 cm. dengan demikian, perpindahan ke timur sejauh 300 m digambar dengan panjang vektor 3 cm, sedangkan perpindahan ke selatan sejauh 400 m digambar 4 cm. lihat gambar di bawah

Untuk menentukan vektor resultan di atas, kita tidak bisa menggunakan hukum berhitung seperti pada dua atau lebih vektor yang segaris, karena dua vektor tersebut tidak segaris kerja. Vektor resultan dapat kita tentukan besarnya menggunakan rumus Pythagoras dalam segitiga siku-siku.

Jadi, besar vektor Resultan = 500 m

Menentukan arah vektor Resultan

Kita sudah mengetahui besar vektor Resultan. Bagaimana dengan arah vektor Resultan tersebut ? untuk menentukan arah vektor Resultan terhadap salah satu vektor komponennya, kita menggunakan rumus Sinus, Cosinus dan Tangen pada segitiga. Perhatikan gambar di bawah ini.

Karena diketahui besar vektor komponen A (300 m) dan besar vektor komponen B (400 m), maka dalam menentukan arah vektor Resultan, kita menggunakan Rumus Tangen.

Menentukan Vektor Resultan dengan Rumus Cosinus

Kita telah menghitung vektor resultan dari dua vektor yang segaris kerja dan dua vektor yang saling tegak lurus. Bagaimana-kah menghitung vektor resultan untuk dua vektor yang tidak segaris kerja dan tidak saling tegak lurus ? wah, mumet ah…. ;)

Kita bisa menghitung vektor resultan dari dua vektor yang berarah sembarang dengan menggunakan rumus cosinus, bukan rumus mas cosa :)

Rumus Cosinus yang digunakan untuk menghitung resultan besar dua vektor yang arahnya sembarang adalah :

Dari mana asal rumus ini ? tiba-tiba nongol di sini ? silahkan bertanya kepada guru matematika anda. Yang pasti cara penurunan rumus ini dijelaskan pada pelajaran matematika SMA (kelas X deh kayanya) mengenai cosinus dan rumus sinus dalam suatu segitiga sembarang.

Agar penasaran atau kebingunganmu berkurang, mari kita pelajari hal ini tapi hanya secara umum.

Misalnya terdapat dua vektor, F1 dan F2 sebagaimana tampak pada gambar di bawah.

Jika besar vektor resultan dihitung dengan rumus cosinus, bagaimana dengan arahnya ? dihitung dengan rumus apakah ? rumus lagi… rumus lagi ;)

Kita menggunakan rumus sinus.

Perhatikan kembali gambar di atas. Arah vektor Resultan dapat dihitung menggunakan sinus pada segitiga OPQ.

Contoh soal :

Dua vektor F1 dan F2 memiliki pangkal berhimpit, di mana besar F1 = 4 N dan besar F2 = 3 N. jika sudut yang dibentuk kedua vektor adalah 60o, berapakah besar dan arah vektor resultan ?

Panduan Jawaban :

Besar vektor resultan kita hitung menggunakan persamaan di atas :

Bagaimana dengan arahnya ?

Arah vektor resultan =

Selesai. Gampang khan ? ;)

MENENTUKAN VEKTOR RESULTAN DENGAN VEKTOR KOMPONEN

Sekarang kita memasuki peradaban baru :) teknik menentukan vektor resultan menggunakan vektor komponen selalu digunakan dalam pembelajaran fisika selanjutnya. Dalam pembahasan Gerak Parabola, kita juga akan menggunakan teknik ini. oleh karena itu GuruMuda mengharapkan agar anda dapat menyedot ilmu vektor komponen ini sampai puas, sehingga bekal perjalanan anda cukup dan tidak kelaparan atau pusing2 ketika belajar gerak parabola dan kawan-kawan.

Sekarang rileks dulu….. silahkan ngemil atau ngelamun atau apa aja-lah,,, terserah kamu.

Metode vektor komponen sangat gampang. Serius…. Oke, mulai ya…..

Oya, sebelumnya ijinkanlah gurumuda memperkenalkan kepada anda, apa itu vektor komponen. Tahukah dirimu apa itu vektor komponen ? jika tidak, mari belajar bersama GM (GuruMuda).

Dalam menggambarkan sesuatu, kita selalu menggunakan koordinat x dan y (untuk dua dimensi) atau koordinat xyz (untuk tiga dimensi). Nah, apabila sebuah vektor membentuk sudut terhadap sumbu x positif, pada bidang koordinat xy, maka kita bisa menguraikan vektor tersebut ke dalam komponen sumbu x atau komponen sumbu y. kedua vektor komponen tersebut biasanya saling tegak lurus. Untuk memudahkan pemahaman anda, kita gambarkan sebuah vektor pada bidang koordinat xy, sebagaimana tampak pada gambar di bawah.

Vektor F yang membentuk sudut teta terhadap sumbu x positif, diuraikan menjadi komponen sumbu x, yaitu Fx dan dan komponen pada sumbu y, yakni Fy. Ini merupakan contoh vektor komponen.

Jika vektor F mempunyai nilai/besar, bagaimanakah dengan vektor komponennya, yakni Fx dan Fy ? bagaimana menghitung besar Fx dan Fy ?

Masih ingat-kah rumus cosinus dkk ? lupa…. ;)

Pahami terlebih dahulu rumus sinus, cosinus dan tangen di bawah ini… dipelototin aja kalo mau (pisss…..)

Bagaimana dengan arah F ? untuk menentukan arah vektor resultan, kita menggunakan rumus tangen. Kita menggunakan rumus tangen karena komponen Fx dan Fy diketahui.

Contoh soal 1 :

Tentukanlah komponen-komponen vektor gaya (F) yang besarnya 40 N dan membentuk sudut 60o terhadap sumbu x positif (lihat gambar)

Panduan jawaban :

Yang ditanyakan pada soal di atas adalah komponen vektor F pada sumbu x dan y (Fx dan Fy).

Contoh soal 2 :

Tentukan besar dan arah vektor perpindahan (L), di mana komponen sumbu x-nya = 40 m dan komponen sumbu y-nya = 30 m.

Panduan jawaban :

Sebelum menjawab pertanyaan di atas, terlebih dahulu digambarkan vektor L dan vektor komponennya pada sumbu x dan sumbu y.

Lx = 40 m

Ly = 30 m

Besar vektor perpindahan (L) adalah :

Vektor perpindahan L membentuk sudut 53o terhadap sumbu x positif (berada di kuadran I)

Perkalian Titik dan Perkalian Silang

Vektor bukan bilangan biasa, sehingga perkalian biasa tidak bisa langsung digunakan pada vektor. Kita harus menggunakan perkalian vektor. Perkalian vektor terdiri dari dua jenis, yaitu perkalian titik dan perkalian silang. Perkalian titik disebut juga perkalian skalar karena menghasilkan besaran skalar. Perkalian silang disebut juga perkalian vektor karena perkalian tersebut menghasilkan besaran vektor.

Misalnya terdapat dua vektor, yakni A dan B. Perkalian skalar dari vektor A dan B dinyatakan dengan A.B (karena digunakan notasi titik maka perkalian ini dinamakan perkalian titik). Perkalian vektor dari A dan B dinyatakan dengan A x B. Karena digunakan notasi x, maka perkalian ini disebut perkalian silang.

Perkalian titik

Misalnya diketahui vektor A dan B sebagaimana tampak pada gambar di bawah. Perkalian titik antara vektor A dan B dituliskan sebagai A.B (A titik B).

perkalian titik dan silang-1

Untuk mendefinisikan perkalian titik dari vektor A dan B (A.B), digambarkan vektor A dan vektor B yang membentuk sudut teta (sambil lihat gambar di bawah). Selanjutnya kita gambarkan proyeksi dari vektor B terhadap arah vektor A. Proyeksi ini adalah komponen dari vektor B yang sejajar dengan vektor A, yang besarnya sama dengan B cos teta.

perkalian titik dan silang-2

Dengan demikian, kita definisikan A.B sebagai besar vektor A yang dikalikan dengan komponen vektor B yang sejajar dengan A. Secara matematis dapat kita tulis sebagai berikut :

perkalian titik dan silang-3

AB cos teta merupakan bilangan biasa (skalar). Karenanya perkalian titik disebut juga perkalian skalar. Bagaimana jika perkalian titik antara vektor A dan B dibalik menjadi B.A ? sebelum kita definisikan B.A, terlebih dahulu kita gambarkan proyeksi dari vektor A terhadap vektor B (lihat gambar di bawah).

perkalian titik dan silang-4

Berdasarkan gambar ini, kita dapat mendefinisikan B.A sebagai besar vektor B yang dikalikan dengan komponen vektor A yang sejajar dengan B. Secara matematis dapat kita tulis sebagai berikut :

perkalian titik dan silang-5

Hasil perkalian titik A.B = AB cos teta dan hasil perkalian titik B.A = BA cos teta. Karena AB cos teta = BA cos teta, maka berlaku A.B = B.A

Beberapa hal dalam perkalian titik yang perlu anda ketahui :

1. Perkalian titik memenuhi hukum komutatif

A.B = B.A

2. Perkalian titik memenuhi hukum distributif

A. (B + C) = A.B + A.C

3. Jika vektor A dan B saling tegak lurus, maka hasil perkalian titik A.B = 0

Ketika vektor A dan B saling tegak lurus, maka sudut yang dibentuk adalah 90o. Cos 90o = 0. Dengan demikian : A.B = AB cos teta = AB cos 90o = 0. Sebaliknya, B.A = BA cos teta = BA cos 90o = 0

4. Jika vektor A dan vektor B searah, maka A.B = AB cos 0o = AB

Ketika vektor A dan B searah, maka sudut yang dibentuk adalah 0o. Cos 0 = 1. Dengan demikian, A.B = AB cos teta = AB cos 0o = AB. Sebaliknya B.A = BA cos teta = BA cos 0o = BA

(Anda jangan bingung dengan AB dan BA. Besar AB = besar BA. Misalnya besar vektor A = 2. besar vektor B = 3. maka A.B = 2.3 = 6; ini sama saja dengan B.A = 3.2 = 6. dipahami perlahan-lahan ya…)

5. Syarat lain dari dua vektor yang searah, jika A = B maka diperoleh A.A = A2 atau B.B = B2

6. Jika vektor A dan B berlawanan arah (ketika dua vektor berlawanan arah maka sudut yang dibentuk adalah 180º), maka hasil perkalian A.B = AB cos 180º = AB (-1) = -AB.

Cos 180º = -1.

Contoh soal :

Sebuah vektor A memiliki besar 4 satuan dan vektor B memiliki 3 satuan. Tentukan hasil perkalian titik dari kedua vektor jika sudut yang dibentuk oleh kedua vektor adalah 60º, 90º dan 180o

Panduan jawaban :

Karena A.B = B.A maka kita bisa memilih menggunakan salah satu. Misalnya kita menggunakan A.B, dengan demikian kita tulis persamaannya

A.B = AB cos teta

Besar A = 4 satuan dan besar B = 3 satuan.

perkalian titik dan silang-6

Soal latihan :

Dua vektor A dan B masing-masing besarnya 6 satuan dan 4 satuan. Tentukan perkalian titik antara kedua vektor jika sudut yang terbentuk adalah 30o, 60o, 90o, 120o, 150o, 180o

Perkalian silang

Perkalian silang dari dua vektor, misalnya vektor A dan B ditulis sebagai A x B (A silang B). Perkalian silang dikenal dengan julukan perkalian vektor, karena hasil perkalian ini menghasilkan besaran vektor.

Misalnya vektor A dan vektor B tampak seperti gambar di bawah.

perkalian titik dan silang-7

Untuk mendefinisikan perkalian silang antara vektor A dan B (A x B), kita gambarkan vektor A dan B seperti gambar di atas, dan digambarkan juga komponen vektor B yang tegak lurus pada A (lihat gambar di bawah), yang besarnya sama dengan B sin teta

perkalian titik dan silang-8

Dengan demikian, kita dapat mendefinisikan besar perkalian silang vektor A dan B (A x B) sebagai hasil kali besar vektor A dengan komponen vektor B yang tegak lurus pada vektor A.

perkalian titik dan silang-9

Bagaimana jika A x B kita balik menjadi B x A ?

Terlebih dahulu kita gambarkan vektor B dan A serta komponen vektor A yang tegak lurus pada B (amati gambar di bawah…)

perkalian titik dan silang-10

Berdasarkan gambar ini, kita dapat mendefinisikan perkalian silang antara vektor B dan A (B x A) sebagai hasil kali besar vektor B dengan komponen vektor A yang tegak lurus pada vektor B. Secara matematis ditulis :

perkalian titik dan silang-11

Arah Perkalian Silang A x B

Perkalian silang adalah perkalian vektor, sehingga hasil perkaliannya memiliki besar dan arah. Besar hasil perkalian vektor telah kita turunkan di atas, sekarang kita menentukan arahnya. Untuk menentukan arah A x B, terlebih dahulu kita gambarkan vektor A dan B seperti gambar di bawah. Kedua vektor ini kita letakan pada suatu bidang (sambil lihat gambar di bawah ya….)

perkalian titik dan silang-12

Kita definisikan perkalian silang A x B sebagai suatu vektor yang tegak lurus bidang di mana vektor A dan B berada. Besarnya sama dengan AB sin teta. Jika C = A x B maka C = AB sin teta

Arah C tegak lurus bidang di mana vektor A dan B berada. Kita dapat menggunakan kaidah tangan kanan untuk menentukan arah C. Jika kita menggenggam jari tangan di mana arahnya berlawanan dengan arah putaran jarum jam, maka arah C searah dengan arah ibu jari menuju ke atas.

Arah Perkalian Silang B x A

Untuk menentukan arah B x A, terlebih dahulu kita gambarkan vektor B dan A seperti gambar di bawah. Kedua vektor ini kita letakan pada suatu bidang (sambil lihat gambar di bawah ya….)

perkalian titik dan silang-13

Jika C = B x A maka C = BA sin teta.

Arah C tegak lurus bidang di mana vektor B dan A berada. Kita dapat menggunakan kaidah tangan kanan untuk menentukan arah C. Jika kita menggenggam jari tangan di mana arahnya searah dengan arah putaran jarum jam, maka arah C sama dengan arah ibu jari menuju ke bawah.

A x B tidak sama dengan B x A. Hasil perkalian silang menghasilkan besaran vektor, di mana selain mempunyai besar, juga mempunyai arah. Pada penurunan di atas, arah A x B berlawanan arah dengan B x A.

Beberapa hal dalam perkalian silang yang perlu anda ketahui :

1. Perkalian silang bersifat anti komutatif.

A x B = – B x A

Tanda negatif menunjukkan bahwa arah B pada A x B berlawanan dengan arah B pada B x A.

2. Jika kedua vektor saling tegak lurus maka sudut yang dibentuk adalah 90o. Sin 90o = 1. Dengan demikian, besar hasil perkalian silang antara vektor A dan B akan tampak sebagai berikut :

A x B = AB sin teta = AB sin 90o = AB

B x A = BA sin teta = BA sin 90o = BA

Ingat ya, ini adalah besar hasil perkalian silang.

3. Jika kedua vektor searah, maka sudut yang dibentuk adalah 0o. Namanya juga segaris…

Sin 0o = 0. Dengan demikian, nilai alias besar hasil perkalian silang antara vektor A dan B akan tampak sebagai berikut.

A x B = AB sin teta = AB sin 0o = 0

B x A = BA sin teta = BA sin 0o = 0

Hasil perkalian silang antara dua vektor yang searah alias segaris kerja sama dengan n0L.

Referensi

Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga

Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga

Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga

Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga